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It is believed that the family of Riemannian manifolds with negative curvatures is much
richer than that with positive curvatures. In fact there are many results on the ob-
struction of furnishing a manifold with a Riemannian metric whose curvature is posi-
tive. In particular any manifold admitting a Riemannian metric whose Ricci curvature
is bounded below by a positive constant must be compact. Here we investigate such
obstructions in terms of certain functional inequalities which can be considered as gen-
eralized Poincaré or log-Sobolev inequalities. A result of Saloff-Coste is extended.
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1. Introduction

Let M be a complete connected Riemannian manifold of dimension d. A basic topic

in Riemannian geometry is the non-existence of Riemannian structures of particular

properties on topological manifolds. One of the often studied question is to equip

a manifold with certain curvature conditions. A classical result in this direction is

Myers’s theorem [16] which says that a noncompact manifold does not admit Ricci

curvature bounded below by a positive constant, say K. Furthermore an upper

bound for the diameter D of the manifold given: D ≤ π
√

d − 1/
√

K. Some effort

have been made to extend Myers’ theorem and tounderstand the intrinsic meaning

of the conditions imposed. See e.g. Bonnet [4] and Ambrose [1]. In Ambrose [1] it
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was shown that compactness follows if
∫ ∞

0

Ric(γ̇(t), γ̇(t))dt = ∞

for each geodesic γ emanating from a fixed point and parameterized by arc length,

allowing Ricci curvature being negative. In [10] Galloway showed, by a careful study

of equations x′′+r(t)x = 0 of the Jacobi type being oscillatory, (1.1) can be replaced

by the following
∫ ∞

0

tλRic(γ̇(t), γ̇(t))dt = ∞ (1.1)

for some λ ∈ [0, 1), thus allowing quadratic decay of the Ricci curvature at the

infinity. If furthermore the Ricci curvature is nonnegative, the manifold is compact

if lim inf t2Ric(γ̇(t), γ̇(t)) > (d − 1)/4.

Another extension of Myers’ result was made by Li [15] using the stochastic pos-

itivity of Ricci curvature. More precisely, let ρ(x) denote the Riemannian distance

between x and a fixed point p, M is compact provided

κ(x) := inf
{

Ric(X, X) : X ∈ TxM, |X | = 1
}

≥ −d

(d − 1)ρ(x)2

for big ρ(x) and

sup
x∈K

∫ ∞

0

E exp

[

− 1

2

∫ t

0

κ(xs)ds

]

< ∞ (1.2)

for any compact K ⊂ M , where xs denotes the Brownian motion on M starting

from x. Note that for compact manifolds, see [9], (1.2) is equivalent to the operator

−∆ + 1
2κ(x) being positive.

Compactness was also studied by Saloff-Coste [18] using the log-Sobolev in-

equality. He proved that a manifold M of finite volume is compact provided the

Ricci curvature is bounded below and that there exists C0 > 0 such that

µ(f2 log f2) ≤ µ(f2) log µ(f2) + C0µ(|∇f |2), f ∈ C∞
0 (M), (1.3)

where µ denotes the normalized volume measure. Estimates of D are presented by

Saloff-Coste [18] and Ledoux [13] in terms of C0, d and the lower bound of the Ricci

curvature.

The compactness of Riemannian manifolds with Ricci curvature bounded from

below also follows from the following condition on the heat kernel pt:
∫

M

1

pt(x, y)
dy < ∞,

a result proved in Gong and Wang [11] and conjectured in Buler [5].

The purpose of this paper is to investigate the compactness of complete Rie-

mannian manifolds in relations to certain functional inequalities which is in general

weaker than the corresponding log-Sobolev inequalities. In some cases the Ricci

curvature is allowed not to be bounded from below, see §3.
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Let L := ∆ + ∇V be a C2 function on the manifold with Z :=
∫

M
eV dx fi-

nite. Consider the normalized measure µ := Z−1eV dx and the following functional

inequality

µ(f2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2 , r > r0, f ∈ C∞
0 (M), (1.4)

where r0 ≥ 0 is a constant and β : (r0,∞) → (0,∞) is a decreasing function.

This inequality was introduced in [19] and there it was shown that the essential

spectrum σess(−L) of −L satisfies σess(−L) ⊂ [ 1
r0

,∞) if and only if (1.4) holds for

some β. Note that (1.3) holds for some C0 > 0 if and only if (1.4) holds for r0 = 0

and β(r) = exp[c(1 + r−1)] for some c > 0. In fact (1.4) generalizes the concepts of

Poincaré inequality, log-Sobolev inequality, Sobolev inequality, and Nash inequality.

In §2 we show the inequality (1.4) with r0 = 0 together with a curvature-

dimension condition implies the manifold is necessarily compact. Our proof is based

on a spectrum argument. In section 3 we consider the following question: assume a

functional inequality of type (1.4) holds what is the weakest possible condition on

the curvature which implies the compactness of M . For example if (1.3) holds then

the curvature condition

lim inf
ρ(x)→∞

0 ∨ (−κ(x))

ρ(x)2
<

1

4(d − 1)2C2
0

implies the compactness of M . This curvature condition is much weaker than the

one used in Saloff-Coste [18], namely, the Ricci curvature is bounded below.

2. A Spectrum Argument

The basic idea is the following: if λess ≡ λess(−L) := inf σess(−L) is positive

then the first Dirichlet eigenvalue on geodesic balls of certain size is shown to have

small uniform upper bound which forces the manifold to be compact. Let D be an

open connected open set of M . Denote by λ0(D) the first Drichlet eigenvalue of

L ≡ ∆ + ∇V on D, i.e.

λ0(D) ≡ λ0(D, L) := inf{µ(|∇f |2) : µ(f2) = 1, f ∈ C∞
0 (D)},

where C∞
0 (D) := {f ∈ C∞

0 (M), supp f ⊂ D}, and µ(dx) = eV (x) dx.

Let B(x, r) denote the open geodesic ball around x with radius r.

Theorem 2.1. If M is not compact then

sup
x∈M

λ0(B(x, r)) ≥ λess

for any r > 0 and any operator L of the form ∆ + ∇V , where V is a C2 function

on M . Consequently if there is a C2 function V : M → R and a positive number r

such that

λ0(r) := sup
x∈M

λ0(B(x, r)) < λess, (2.1)

then M is compact.
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Proof. Suppose that M is noncompact. Set a = 1
2 (λess − λ0(r)). By Donnely-Li’s

decomposition principle [8], σess(−L|Dc) = σess(−L) for compact sets D. Thus,

λ0(D
c) → λess as D approaches M . If a := 1

2 (λess − λ0(r)) > 0, then there is a

compact domain D such that

λ0(D
c) ≥ λess − a =

1

2
λess +

1

2
λ0(r).

Now for any r we can find x such that B(x, r) ∩ D = φ. Thus by the domain

monotonicity of the first Dirichlet eigenvalue

λ0(r) ≥ λ0(B(x, r)) ≥ λ0(D
c) ≥ 1

2
λess +

1

2
λ0(r),

which implies a ≤ 0.

In the following we shall use (1.4) and upper bounds of L acting on distance

functions to obtain (2.1). Let ρx be the Riemannian distance function from x, and

cut(x) the cut locus of x.

Let us first recall a comparison lemma:

Lemma 2.2. Let γ be a positive continuous function on (0,∞) such that Lρx(y) ≤
γ (ρx(y)) for any x and y 6∈ {x} ∪ cut(x). Define a measure ν on [0,∞) with

ν(dr) = e
∫

r

1
γ(s) ds dr.

Let Λγ be the principal eigenvalue of Lγ := d2

dr2 + γ d
dr :

Λγ := inf

{
∫ ∞

0

|h′|2(r) ν(dr) : h ∈ C∞
0 ([0,∞)), ν(h2) = 1

}

.

Then

lim
s↑∞

sup
x∈M

λ0(B(x, s)) ≤ Λγ .

Proof. Let Λγ
0,s be the first eigenvalue of Lγ = d2

dr2 +γ(r) d
dr on [0, s] with Neumann

boundary at 0 and Dirichlet boundary at s, and hsthe corresponding (positive)

eigenfunction. Then hs is decreasing since it has no critical point on (0, s] as shown

in Chen-Wang [7] (Proposition 6.4).

Now for any x, hs ◦ ρx is defined on B(x, s) and

(∆ + V )(hs ◦ ρx) = ∆(hs ◦ ρx) + h′
s(ρx)〈∇V,∇ρx〉

= h′′
s (ρx) + h′

s(ρx) Lρx

≥ h′′
s (ρx) + h′

s(ρx)γ(ρx)

= −Λγ
0,shs ◦ ρx

outside of the cut locus of x. Since the cut locus of x has measure 0,

(∆ + ∇V )(hs ◦ ρx) ≥ −Λγ
0,shs ◦ ρx
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on B(x, s) in the sense of distribution (see e.g. Appendix in Yau [21]). Therefore

λ0(B(x, s)) ≤ Λγ
0,s and

lim
s↑∞

sup
x∈M

λ0(B(x, s)) ≤ lim
s↑∞

Λγ
0,s = Λγ . �

Theorem 2.3. Suppose
∫

M
eV (x)d x < ∞ and Lρx ≤ γ ◦ ρ. Let Λγ be the principal

eigenvalue of d2

dr2 + γ d
dr on [0,∞). Then the inequality (1.4) does not hold for any

r0 < 1
Λγ unless the manifold is compact.

Proof. Suppose that the inequality (1.4) holds for some r0 < 1
Λγ then by [19]

λess(−L) ≥ 1

r0
> Λγ .

By the eigenvalue comparison lemma L(ρ) ≤ γ(ρ) implies that there exists s > 0

such that

sup
x∈M

λ0(B(x, s)) ≤ Λγ
s < λess(−L).

Theorem 2.1 now applies to imply the compactness of the manifold.

It is known that Ricci curvature bounded from below implies that ∆ρx ≤ c(1 +

ρ−1
x ) for some constant c and any x ∈ M . In general this is true for L = ∆ + ∇V

if the following curvature dimension condition holds:

Γ2(f, f) :=
1

2
L|∇f |2 − 〈∇f,∇Lf〉 ≥ −K|∇f |2 +

1

n
(Lf)2, f ∈ C∞(M), (2.2)

where K ≥ 0, n > 1 are constants. This inequality is equivalent to that the Ricci

curvature being bounded from below by −K in the case that L = ∆ and n = d,

the dimension of the manifold. It was shown in Qian [17] that (2.2) implies that

Lρx ≤ γ(ρx) outside of {x} ∪ cut(x) where

γ(r) =
√

K(n − 1) coth[r
√

K/(n − 1)]. (2.3)

This consideration leads to the following corollary:

Corollary 2.4. Assume (2.2) and
∫

M
eV (x)d x < ∞. Then (1.4) cannot hold for

any r0 < 4/K(n− 1) unless the manifold is compact.

Proof. Cheeger’s inequality implies that the principal eigenvalue of d2

dr2 + γ d
dr is

less than or equal to K(n − 1)/4. See Chavel [6]. Theorem 2.3 now applies.

Let Pt be the semigroup associated to the heat equation ∂
∂t = L. We relate the

spectrum of −L to the integral kernel pt(x, x), with respect to the measure µ, of

the semigroup Pt.

Proposition 2.5. Assume
∫

M
eV (x)d x < ∞. If

∫

M
pt(x, x)µ(dx) < ∞ for some

t > 0, then λess(−∆ −∇V ) = ∞, or equivalently, (1.4) holds for some function β
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with r0 = 0. Consequently
∫

M
pt(x, x)µ(dx) < ∞ for some t > 0 and the curvature

dimension inequality (2.2) together imply that the manifold is compact.

Proof. The relation of the super Poincaré inequality (1.4) and the essential spec-

trum of (−L) is given by Theorem 2.1 in [19]. We shall show λess(−L) = ∞. For

any f with µ(f2) ≤ 1, one has (Ptf(x))2 ≤ p2t(x, x), t > 0, x ∈ M. Therefore,

if
∫

pt(x, x)µ(dx) < ∞ then Pt/2 is L2(µ)-uniformly integrable and hence Pt is

compact in L2(µ), see e.g. Theorem 2.3 in [20]. Thus, the proof is complete since

σess(L) = ∅ if Pt is compact.

Corollary 2.6. Assume (2.2) and
∫

M
eV (x)d x < ∞. Let ρ := ρx0

for a fixed

x0 ∈ M . Then M is compact provided one of the following holds:

(1) K = 0 and µ(ρn) < ∞.

(2) K > 0 and µ
(

ρn/2 exp
[1

2

√
nK

(√
2 + 1

)

ρ
])

< ∞.

Proof. By Proposition 2.5, in both cases we only need to prove that
∫

M pt(x, x)µ(dx) < ∞ holds for some t > 0. First observe, by Corollary 2 in [2] (see

[3] for more details),

pt(x, x) exp

[

−
(

ρx(y)+
√

nK s
)

2

4s −
√

nK
2 min

{

(√
2 − 1

)

ρx(y),
√

nK
2 s

}

]

≤
(

t+s
t

)n/2

pt+s(x, y), t, s > 0, x, y ∈ M.

(2.4)

For part (1), take s = ρ(x)2 + 1 in (2.4) and integrate both sides over y with

respect to µ to obtain

cpt(x, x)µ(B(x0 , 1)) ≤
( t + ρ(x)2 + 1

t

)n/2

for some c > 0. Thus
∫

M

pt(x, x)µ(dx) ≤ c1(1 + t−n/2) < ∞

for some c1 > 0 and all t > 0.

For part (2) take s = (ρ(x) + 1)
/√

nK in (2.4) to see

pt(x, x) ≤ c(t)(ρ(x) + 1)n/2 exp

[

√
nK

2

(√
2 + 1

)

ρ(x)

]

for some c(t) > 0. Hence
∫

M
pt(x, x)µ(dx) < ∞ for all t > 0.

So far we conclude that (1.4) together with the curvature-dimension condition

(2.2) implies the compactness of M . Below we show that (1.4) alone, with a good

enough function β, also implies the compactness of the manifold.
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Proposition 2.7. Assume
∫

M
eV (x)d x < ∞. If (1.4) holds for r0 = 0 some β

satisfying

C(δ) :=

∫ ∞

1

1

r2
log β

( 1

δr2

)

dr < ∞ (2.5)

for some δ > 1, then M is compact with diameter

D ≤ inf
δ>1

{

log
δµ(eρ)

δ − 1
+ C(δ)

}

.

Conversely, if M is compact then (1.4) holds for r0 = 0 and β(r) = c(1 + r−d/2)

for some c > 0, hence (2.5) holds for all δ > 1.

Proof. The first assertion follows from Theorem 6.1 in [19], while the second as-

sertion follows from Corollary 3.3 in [19] by the Sobolev inequality on compact

manifolds.

3. A Measure-Curvature Argument

In this section we shall assume that the essential spectrum of −L is empty, i.e.

λess = ∞. Recall that according to [19] this is equivalent to the super Poincaré

inequality

µ(f2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2, r > 0, f ∈ C∞
0 (M) (3.1)

a decreasing function β : (0,∞) → (0,∞). Consider the following generalized cur-

vature dimension inequality:

Γ2(f, f) ≥ −(n − 1)(k ◦ ρ)|∇f |2 +
1

n
(Lf)2, f ∈ C∞

0 (M), (3.2)

where ρ := ρx0
for a fixed point x0, n > 1 and k is an increasing function from

(0,∞) to (0,∞). When L = ∆ and n = d is the dimension of the manifold, (3.2) is

equivalent to Ricx ≥ −(d − 1)k ◦ ρ(x), x ∈ M . We allow k to be unbounded. Now

(3.1) implies decay of µ(ρ > r) while (3.2) provides a lower bound of µ(ρ > r). The

two together with appropriate choices of β and k should force the manifold to be

compact.

Theorem 3.1. Assume
∫

M
eV (x)d x < ∞. The manifold M is compact if (3.2)

holds and

lim sup
r→∞

− logµ(ρ > r)

(n − 1)r
√

k(2r + 3)
> 1. (3.3)

Proof. Assume that M is noncompact. For any r > 0 there exists xr ∈ M such

that ρ(xr) = r + 1. Apply (3.2) to see

Γ2(f, f)(x) ≥ −(n−1)k(2r+3)|∇f |2(x)+
1

n
(Lf)2(x), f ∈ C∞(M), x ∈ B(xr , r+2).
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On the other hand, see Qian [17],

Lρxr
≤ (n − 1)

√

k(2r + 3) coth
[

√

k(2r + 3) ρxr

]

on B(xr , r+2)\({xr}∪cut(xr)). This implies, by a standard argument as in Lemma

2.2 in [11], that

µ(B(xr , r + 2)) ≤ µ(B(xr , 1))(r + 2)n exp
[

(n − 1)(r + 1)
√

k(2r + 3)
]

.

Consequently

µ(ρ > r) ≥ µ(B(xr , 1)) ≥ µ(B(x0, 1))(r + 2)−n exp
[

− (n − 1)(r + 1)
√

k(2r + 3)
]

contradicting with (3.3).

Corollary 3.2. Assume (3.1), (3.2) and
∫

M
eV (x)d x < ∞. Then M is compact if

(3.3) holds with µ(ρ > r) replaced by pc(r) for any c > 0 defined below:

pc(r) := inf
λ,δ>1

exp

{

(c − r)λ + λ

∫ λ

1

1

s2
log

[ δ

δ − 1
β
( 1

δs2

)]

ds

}

.

Proof. By Theorem 6.1 in [19] (3.1) implies that µ(eρ) < ∞ and

µ(exp[λρ]) ≤ µ(eρ)λ exp

[

λ

∫ λ

1

1

r2
log

[ δ

dd − 1

(

1

(δr2)

)]

dr

}

.

Therefore, µ(ρ > r) ≤ pc(r) for c := log µ(eρ). The proof is complete by Theo-

rem 3.1.

Corollary 3.3. Assume
∫

M
eV (x)d x < ∞ and the super Poincaré inequality (3.1)

holds for the function β(r) = c1 exp[c2r
−α], where c1, c2, α > 0 are constants, and

(3.2) holds. Then the manifold is compact in each of the following situations:

(1) α < 1/2.

(2) α = 1/2 and lim sup
r→∞

r

log k(r)
> 2c2.

(3) α > 1/2 and lim sup
r→∞

r2/(2α−1)

k(r)
> (n − 1)2

( 2α

2α − 1

)4α/(2α−1)

(2c2)
2/(2α−1).

Proof. Part (1) is covered by Proposition 2.7. For part (2) and (3) we only need

to verify that (3.3) holds for pc(r) defined in the previous corollary. Note that for

any σ1 > σ2 > 1, there exists c3 > 0 such that for all λ ≥ 1,

λ

∫ λ

1

1

r2
log

[ σ2

σ2 − 1
β
( 1

(σ2r2)

)]

dr ≤
{

c3 +
c2σα

1

2α−1λ2α, if α > 1/2,

c3 + c2
√

σ1λ log λ, if α = 1/2.

Then, for any c > 0 and any σ > 1,

log pc(r) ≤







−r2α/(2α−1)
(

2α−1
2α

)2α/(2α−1)

(c2σ)−1/(2α−1), if α > 1
2 , r � 1,

− exp[r/(c2σ)], if α = 1
2 , r � 1.
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Thus each of (2) and (3) implies (3.3) for pc(r) in place of µ(ρ > r). The result now

follows from Corollary 3.2.

It is known from [19] that (3.1) is equivalent to an F -Sobolev inequality (see

[19] for details). In particular we consider the following generalized log-Sobolev

inequality

µ(f2[log(f2 + 1)]δ) ≤ C1µ(|∇f |2) + C2, f ∈ C∞
0 (M), µ(f2) = 1, (3.4)

where δ, C1, C2 > 0 are constants. This leads to the next corollary. When δ 6= 1,

we will reduce the inequality to (3.1) to apply Corollary 3.3. But when δ = 1 we

will use a Herbst’s argument to obtain estimates of µ(ρ > r) directly from (3.4).

Certainly in the latter case the first method also applies, but the resulting condition

(3) is worse than (4) below.

Corollary 3.4. Assume (3.2), (3.4) and
∫

M eV (x)d x < ∞. M is compact provided

at least one of the following holds.

(1) δ > 2.

(2) δ = 2 and lim sup
r→∞

r

log k(r)
> 2

√
C1.

(3) δ < 2 and lim sup
r→∞

r2δ/(2−δ)

k(r)
>

(n − 1)2C
2/(2−δ)
1 4(2+δ)/(2−δ)

(2 − δ)4/(2−δ)
.

(4) δ = 1 and lim sup
r→∞

r2

k(r)
> 4(n − 1)2C2

1 .

Proof. We shall apply Corollary 3.3 by converting (3.4) to (3.1). Letting F (t) :=

[log(t + 1)]δ, we have

F−1(t) = exp[t1/δ] − 1 ≤ exp[t1/δ ], t > 0.

By (3.4) and the proof of Theorem 3.1 in [19], we obtain

(t − C2)µ(f2) ≤ t
√

exp[t1/δ]µ(f2) + C1µ(|∇f |2)
for all t > 0 and all f ∈ C∞

0 (M) with µ(|f |) = 1. This implies that

µ(f2) ≤ C1

(1 − ε)t − C2
µ(|∇f |2) +

t exp[t1/δ]

4ε
.

Taking t = (C1r
−1 + C2)/(1 − ε), we obtain (3.1) for

β(r) =
C1r

−1 + C2

4ε(1− ε)
exp

[

(C1r
−1 + C2

1− ε

)1/δ
]

, r > 0,

for any ε ∈ (0, 1). The required result now follows, for δ 6= 1 from Corollary 3.3. If

δ = 1 then (3.4) implies

µ(f2 log f2) ≤ C1µ(|∇f |2) + C2, f ∈ C∞
0 (M), µ(f2) = 1, (3.5)

for some C1, C2 > 0. By an argument due to Herbst (cf. p. 148 in [14]), (3.5)

implies µ(ρ > r) ≤ c exp[−r2/C1] for some constant c > 0. Part (4) now follows

from Theorem 3.1.
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